Distance matrices and isometric embeddings

نویسندگان

  • E. Bogomolny
  • O. Bohigas
  • C. Schmit
چکیده

Matrices with random (or pseudo-random) elements appear naturally in different physical problems and their statistical properties have been thoroughly investigated (see e.g. [1]). A special case of random matrices, called distance matrices, has been recently proposed in [2]. They are defined for any metric space X with a probability measure μ on it as follows. Choose N points ~xj ∈ X randomly distributed according to the measure μ. The matrix element Mij of the N ×N distance matrix M equals the distance on X between points ~xi and ~xj

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . FA ] 8 S ep 1 99 7 DISTANCES BETWEEN BANACH SPACES

The main object of the paper is to study the distance between Banach spaces introduced by Kadets. For Banach spaces X and Y , the Kadets distance is defined to be the infimum of the Hausdorff distance d(B X , B Y) between the respective closed unit balls over all isometric linear embeddings of X and Y into a common Banach space Z. This is compared with the Gromov-Hausdorff distance which is def...

متن کامل

Isometric embeddings in Hamming graphs

The results presented in this paper are parts of my doctoral thesis [ 193; the algorithm and some of the characterizations in Section 7 have been introduced in [ 181. Motivation for isometric embeddings into Hamming graphs has come from communication theory (Graham and Pollak [ 121) an-d linguistics (Firsov 1181). Isometric subgraphs of Hamming graphs also appear in biology as “quasi-species” (...

متن کامل

Distances between Banach spaces

Abstraca. The main object of the paper is to study the distance betwecn Banach spaces introduced by Kadets. For Banach spaccs Xand y. thc lGders distancc is denned to be rhe infimum of the Hausdorfl distance d(Bx, rr) betwecn the respoctive closed unit balls over all isomctric linear embeddings of f and yinto a common Banach space Z. This is comparcd with the Gromov-Hausdorff distance which is ...

متن کامل

Metric Transforms and Euclidean Embeddings

It is proved that if 0 < c < 0.72/« then for any «-point metric space (X, d), the metric space (X,dc) is isometrically embeddable into a Euclidean space. For 6-point metric space, c = j log2 | is the largest exponent that guarantees the existence of isometric embeddings into a Euclidean space. Such largest exponent is also determined for all «-point graphs with "truncated distance".

متن کامل

RELATIVE ISOMETRIC EMBEDDINGS OF RIEMANNIAN MANIFOLDS IN Rn

We prove the existence of C isometric embeddings, and C∞ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002